next up previous
Next: About this document ... Up: CHAOTIC DYNAMICAL SYSTEMS AND Previous: Conclusion

Bibliography

1
E. N. Lorenz, Deterministic Nonperiodic Flow; Journal of the Atmospheric Sciences, vol. 20, 1963, pp. 130-141.

2
J. L. McCauley, Chaos, Dynamics and Fractals: an algorithmic approach to deterministic chaos; Cambridge University Press, Great Britain, 1993.

3
L. A. Anosov, O. Ya. Butkovskii, Yu. A. Kravtsov, E. D. Surovyatkina, Predictable Nonlinear Dynamics: Advances and Limitations; American Institute of Physics Conference Proceedings, Chaotic, Fractal, & Nonlinear Signal Processing, Mistic, CT, 1995, pp. 71-91.

4
R. R. Stoll, Set Theory and Logic, Dove Publications Inc., New York, 1963.

5
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer-Verlag, New York, 1990

6
J. J. D'Azzo, C. H. Houpis, Linear Control System Analysis and Design: Conventional and Modern; 3era Ed., McGraw-Hill Book Company, Singapore, 1988.

7
M. P. Kennedy, Three Steps to Chaos-Part I: Evolution; IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 40, no. 10, October, 1993, pp. 640-656.

8
M. P. Kennedy, Three Steps to Chaos-Part II: A Chua's Circuit Primer; IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 40, no. 10, October, 1993, pp. 657-674.

9
A. B. Campbell, Applied Chaos Theory: A Paradigm for Complexity; Academic Press Inc., USA, 1993, pp. 81-125.

10
M. Arbib, L. Padulo, System Theory: A Unified State-Space Approach to Continuous and Discrete Systems; Hemisphere Publishing Corporation, Toronto, 1974.

11
H. K. Khalil, Nonlinear Systems; Macmillan Publishing Company, New York, 1992.

12
M. Feigenbaum, Universal Behavior in Nonlinear Systems; Los Alamos Science, vol 1., 1980, pp. 4-27.

13
T. Li, J. Yorke, Period Three Implies Chaos, American Mathematical Monthly, vol. 82, 1975, pp. 985-992.

14
R. L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and Experiment; 5th Printing, Addison-Wesley Publishing Company Inc., USA, 1996.

15
T. Matsumoto, L. O. Chua, M. Komuro, The Double Scroll Bifurcations, IEEE Circuit Theory and Applications, vol. 14, 1986, pp. 117-146.

16
J. M. Cruz, L. O. Chua, An IC Chip of Chua's Circuit; IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 40, no. 10, October, 1993, pp. 614-627.

17
M. J. Ogorzalek, Taming Chaos-Part I: Synchronization; IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 40, no. 10, October, 1993, pp. 693-699.

18
M. J. Ogorzalek, Taming Chaos-Part II: Control; IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 40, no. 10, October, 1993, pp. 700-706.

19
A. De Angeli, R. Genesio, A. Tesi, Dead-Beat Chaos Synchronization in Discrete-Time Systems; IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 42, no. 1, January, 1995, pp. 52-54.

20
G. Mayer-Kress, I. Choi, N. Weber, R. Bagar, A. Hbler, Musical Signals from Chua's Circuit; IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 40, no. 10, October, 1993, pp. 688-695.

21
X. Rodet, Models of Musical Instruments from Chua's Circuit with Time Delay; IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 40, no. 10, October, 1993, pp. 696-700.

22
M. P. Kennedy, Applications of Chaos in Communications, in Intelligent Methods in Signal Processing and Communications, D. Docampo, A. R. Figueiras-Vidal, F. Pèrez-González, Editors, Birkhuser, Boston, 1997.

23
T. L. Carroll, Communicating With Use of Filetered, Synchronized, Chaotic Signals; IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 42, no. 3, March, 1995, pp. 105-110.

24
J. C. Córdova Zeceña, Applications of Chaos and Fractals to Cryptology, PhD. Dissertation, University of Arkansas, 1999.

25
Y. Liu, Nonlinear Dynamics and Cryptosystems; American Institute of Physics, Conference Proceedings on Chaotic, Fractal, and Nonlinear Signal Processing, Mistic, CT, 1996, pp. 762- 776.

26
H. D. I. Abarbanel, Analysis of Observed Chaotic Data; Springer-Verlag, New York, 1996.

27
J. C. Córdova Zeceña, A Fractal Approach to Signal Prediction; MSEE Thesis, University of Arkansas, 1997.

28
C. E. Shannon, Communications Theory of Secrecy; Bell Systems Technical Journal, vol. 28, October, 1949, pp. 656-715.

29
M. E. Hellman, An Extension of the Shannon Theory Approach to Cryptography; IEEE Transactions on Information Theory, vol. IT-23, no. 3, May, 1977, pp. 289-294.

30
A. G. Konheim, Cryptography: A Primer; John Wiley & Sons, New York, 1981.

31
K. Falconer, Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons Ltd., Re-print, Great Britain, 1995.

32
J. C. Córdova Zeceña, E. E. Yaz, A Fractal Approach to Signal Prediction; in Smart Engineering Systems: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Rough Sets, vol. 8, ASME Press, New York, 1998, pp. 735-740.

33
J. C. Córdova Zeceña, E. E. Yaz, Selection and Performance of Probabilistic Tables used in Non-model Based Signal Prediction, IEEE International Conference on Control Applications and IEEE International Symposium on Computer Aided Control System Design, Hawaii, August, 1999.



root 2001-01-22