Next: About this document ...
Up: CHAOTIC DYNAMICAL SYSTEMS AND
Previous: Conclusion
- 1
- E. N. Lorenz, Deterministic Nonperiodic Flow; Journal of the
Atmospheric Sciences, vol. 20, 1963, pp. 130-141.
- 2
- J. L. McCauley, Chaos, Dynamics and Fractals: an algorithmic
approach to deterministic chaos; Cambridge University Press, Great Britain,
1993.
- 3
- L. A. Anosov, O. Ya. Butkovskii, Yu. A. Kravtsov, E. D.
Surovyatkina, Predictable Nonlinear Dynamics: Advances and Limitations;
American Institute of Physics Conference Proceedings, Chaotic, Fractal, &
Nonlinear Signal Processing, Mistic, CT, 1995, pp. 71-91.
- 4
- R. R. Stoll, Set Theory and Logic, Dove Publications Inc.,
New York, 1963.
- 5
- S. Wiggins, Introduction to Applied Nonlinear Dynamical
Systems and Chaos; Springer-Verlag, New York, 1990
- 6
- J. J. D'Azzo, C. H. Houpis, Linear Control System Analysis
and Design: Conventional and Modern; 3era Ed., McGraw-Hill Book Company,
Singapore, 1988.
- 7
- M. P. Kennedy, Three Steps to Chaos-Part I: Evolution; IEEE
Transactions on Circuits and Systems-I: Fundamental Theory and Applications,
vol. 40, no. 10, October, 1993, pp. 640-656.
- 8
- M. P. Kennedy, Three Steps to Chaos-Part II: A Chua's Circuit
Primer; IEEE Transactions on Circuits and Systems-I: Fundamental Theory and
Applications, vol. 40, no. 10, October, 1993, pp. 657-674.
- 9
- A. B. Campbell, Applied Chaos Theory: A Paradigm for
Complexity; Academic Press Inc., USA, 1993, pp. 81-125.
- 10
- M. Arbib, L. Padulo, System Theory: A Unified State-Space
Approach to Continuous and Discrete Systems; Hemisphere Publishing
Corporation, Toronto, 1974.
- 11
- H. K. Khalil, Nonlinear Systems; Macmillan Publishing
Company, New York, 1992.
- 12
- M. Feigenbaum, Universal Behavior in Nonlinear Systems; Los
Alamos Science, vol 1., 1980, pp. 4-27.
- 13
- T. Li, J. Yorke, Period Three Implies Chaos, American
Mathematical Monthly, vol. 82, 1975, pp. 985-992.
- 14
- R. L. Devaney, A First Course in Chaotic Dynamical Systems:
Theory and Experiment; 5th Printing, Addison-Wesley Publishing Company Inc.,
USA, 1996.
- 15
- T. Matsumoto, L. O. Chua, M. Komuro, The Double Scroll
Bifurcations, IEEE Circuit Theory and Applications, vol. 14, 1986, pp.
117-146.
- 16
- J. M. Cruz, L. O. Chua, An IC Chip of Chua's Circuit; IEEE
Transactions on Circuits and Systems-II: Analog and Digital Signal
Processing, vol. 40, no. 10, October, 1993, pp. 614-627.
- 17
- M. J. Ogorzalek, Taming Chaos-Part I: Synchronization; IEEE
Transactions on Circuits and Systems-I: Fundamental Theory and Applications,
vol. 40, no. 10, October, 1993, pp. 693-699.
- 18
- M. J. Ogorzalek, Taming Chaos-Part II: Control; IEEE
Transactions on Circuits and Systems-I: Fundamental Theory and Applications,
vol. 40, no. 10, October, 1993, pp. 700-706.
- 19
- A. De Angeli, R. Genesio, A. Tesi, Dead-Beat Chaos
Synchronization in Discrete-Time Systems; IEEE Transactions on Circuits and
Systems-I: Fundamental Theory and Applications, vol. 42, no. 1, January,
1995, pp. 52-54.
- 20
- G. Mayer-Kress, I. Choi, N. Weber, R. Bagar, A. Hbler,
Musical Signals from Chua's Circuit; IEEE Transactions on Circuits and
Systems-II: Analog and Digital Signal Processing, vol. 40, no. 10, October,
1993, pp. 688-695.
- 21
- X. Rodet, Models of Musical Instruments from Chua's Circuit
with Time Delay; IEEE Transactions on Circuits and Systems-II: Analog and
Digital Signal Processing, vol. 40, no. 10, October, 1993, pp. 696-700.
- 22
- M. P. Kennedy, Applications of Chaos in Communications, in
Intelligent Methods in Signal Processing and Communications, D. Docampo, A.
R. Figueiras-Vidal, F. Pèrez-González, Editors,
Birkhuser, Boston, 1997.
- 23
- T. L. Carroll, Communicating With Use of Filetered,
Synchronized, Chaotic Signals; IEEE Transactions on Circuits and Systems-I:
Fundamental Theory and Applications, vol. 42, no. 3, March, 1995, pp.
105-110.
- 24
- J. C. Córdova Zeceña, Applications of Chaos and
Fractals to Cryptology, PhD. Dissertation, University of Arkansas, 1999.
- 25
- Y. Liu, Nonlinear Dynamics and Cryptosystems; American
Institute of Physics, Conference Proceedings on Chaotic, Fractal, and
Nonlinear Signal Processing, Mistic, CT, 1996, pp. 762- 776.
- 26
- H. D. I. Abarbanel, Analysis of Observed Chaotic Data;
Springer-Verlag, New York, 1996.
- 27
- J. C. Córdova Zeceña, A Fractal Approach to Signal
Prediction; MSEE Thesis, University of Arkansas, 1997.
- 28
- C. E. Shannon, Communications Theory of Secrecy; Bell
Systems Technical Journal, vol. 28, October, 1949, pp. 656-715.
- 29
- M. E. Hellman, An Extension of the Shannon Theory Approach
to Cryptography; IEEE Transactions on Information Theory, vol. IT-23, no. 3,
May, 1977, pp. 289-294.
- 30
- A. G. Konheim, Cryptography: A Primer; John Wiley & Sons,
New York, 1981.
- 31
- K. Falconer, Fractal Geometry: Mathematical Foundations and
Applications; John Wiley & Sons Ltd., Re-print, Great Britain, 1995.
- 32
- J. C. Córdova Zeceña, E. E. Yaz, A Fractal Approach
to Signal Prediction; in Smart Engineering Systems: Neural Networks, Fuzzy
Logic, Evolutionary Programming, Data Mining, and Rough Sets, vol. 8, ASME
Press, New York, 1998, pp. 735-740.
- 33
- J. C. Córdova Zeceña, E. E. Yaz, Selection and
Performance of Probabilistic Tables used in Non-model Based Signal
Prediction, IEEE International Conference on Control Applications and IEEE
International Symposium on Computer Aided Control System Design, Hawaii,
August, 1999.
root
2001-01-22