next up previous
Next: The Nucleon Doublet Up: Parenthesis on Isospin and Previous: Parenthesis on Isospin and

The SU(2) Group

This is the group, non abelian, of of $2\times2$ complex matrices $U$ which verify

\begin{displaymath}
\begin{array}{rll}
U^{\dagger} U & = U U^{\dagger} = 1 &\;;\;[unitary] \\
\det U & = 1 &\;;\;[unimodular]
\end{array}\end{displaymath} (179)

This group depends on three continuous parameters $(\alpha_{1},\alpha_{2}
,\alpha_{3})$. The elements of the group can be written
\begin{displaymath}
U = exp [i \sum_{j}I_{j} \alpha_{j}] = e^{i I_{j} \alpha_{j}}
\end{displaymath} (180)

with
\begin{displaymath}
I_{j}^{\dagger} = I_{j}
\end{displaymath} (181)

and
\begin{displaymath}
Tr\{I_{j}\} = 0
\end{displaymath} (182)

A possible election of $I_{j}$ is

\begin{displaymath}
I_{j} = \frac{1}{2} \tau_{j}
\end{displaymath} (183)

where $\tau_{j}$ are the Pauli matrices which verify the commutation rules
\begin{displaymath}[\frac{1}{2} \tau_{i},\frac{1}{2} \tau_{j}]= i \epsilon_{ijk} 
\frac{1}{2} \tau_{k}
\end{displaymath} (184)

Writing an infinitesimal transformation

\begin{displaymath}
U(\alpha_{1},\alpha_{2},\alpha_{3}) \simeq 1 + i I_{j} \alpha_{j}
\end{displaymath} (185)

it is clear that the $I_{j} ; (j=1,2,3)$ are the generators of the group.

The Lie theorem, which shows that the commutation rules are valid independently of the representation of the generators, allows to write

\begin{displaymath}[I_{i},I_{j}]= i \epsilon_{ijk} I_{k}
\end{displaymath} (186)

and therefore $\epsilon_{ijk}$ are the structure constants of the non abelian Lie algebra of SU(2).

There exists an operator which commutates with the three generators

\begin{displaymath}
I^{2} = I_{1}^{2} + I_{2}^{2} + I_{3}^{2}
\end{displaymath} (187)

which is the Casimir operator of the group. As a consequence, the irreducible representations of $SU(2)$ are characterized by the eigenvalues of $I^{2}$ . Resulting
$\displaystyle I^{2}  \mid j,m>$ $\textstyle =$ $\displaystyle j (j+1) \mid j,m>$ (188)
$\displaystyle I_{3}  \mid j,m>$ $\textstyle =$ $\displaystyle m \mid j,m>$ (189)

with $-j\leq m \leq j$. The states $\mid j,m>$ belong to an irreducible basis of dimension $d=2 j + 1$.

There exists also an empirical relation of Gell-Mann and Nishijima for the electric charge of a particle, namely

\begin{displaymath}
Q = I_{3} + \frac{1}{2} Y = I_{3} + \frac{B+S}{2}
\end{displaymath} (190)

That makes clear then, from the commutation relations, that
\begin{displaymath}[Q,I_{j}]\neq 0 \;;\; for\;j=1,2
\end{displaymath} (191)

that is to say, the electric charge breakes the conservation of isospin as it should be expected.


next up previous
Next: The Nucleon Doublet Up: Parenthesis on Isospin and Previous: Parenthesis on Isospin and
root 2001-01-22